3986.net
小网站 大容量 大智慧
相关文档
相关标签
当前位置:首页 >> 数学 >>

山东省2014届高三文科数学一轮复习之2013届名校解析试题精选分类汇编2:函数


taoti.tl100.com

你的首选资源互助社区

山东省 2014 届高三文科数学一轮复习之 2013 届名校解析试题精选分类汇编 2:函数
一、选择题 1 . ( 【解析】 山东省烟台市 2013 届高三上学期期末考试数学 (文) 试题) 函数 f ( x) ? 1n( x ? 1) ?

2 x


的零点所在的大致区间是 ( A.(0,1) B.(1,2) C.(2,e) D.(3,4) 【答案】B【解析】因为 f (1) ? 1n 2 ? 2 ? 0 , f (2) ? 1n3 ? 1 ? 0 ,所以函数的零点所在的 大致区间是 (1, 2) 中间,选 B.
2 .【解析】山东省济宁市 2013 届高三 1 月份期末测试(数学文)解析)已知函数 (

f ? x ? 是定


义 在

R

上 的 奇 函 数 . 若 对 于 x ? 0 , 都 有 f ? x ? 2 ? ? f ? x? , 且 当

x ? ? 0, 2? 时,f ? x ? ? log2 ? x ? 1? ,则 f ? 2012 ? ? f ? ?2013? ? ( A.1 B.2 C. ?1 D. ?2 【 答 案 】 C 解 : 由 f ? x ? 2? ? f ? x ? 可 知 函 数 f ( x) 的 周 期 是 2., 所 以 f ? 2012 ? ? f ? 2013? ? f (0) ? f (1) ? log 2 1 ? log 2 2 ? ?1 ,选 C.
3 .【解析】山东省烟台市 2013 届高三上学期期末考试数学(文)试题)已知函数 (

f ( x) ? e x ,


对于曲线 y ? f ( x) 上横坐标成等差数列的三个点 ( A. B.C,给出以下四个判断:①△ABC 一定是钝角 三角形;②△ABC 可能是直角三角形;③△ABC 可能是等腰三角形;④△ABC 不可能是等腰 三角形,其中正确的判断是 ( ) A.①③ B.①④ C.②③ D.②④ x x1 x 【 答 案 】 B 【 解 析 】 设 A( x1 , e ), B ( x2 , e 2 ), C ( x3 , e 3 ) , 则

??? ? ??? ? BA ? ( x1 ? x2 , e x1 ? e x2 ) BC ? ( x3 ? x2 , e x3 ? e x2 ) . , , x1 ? x2 ? 2 x3 ??? ??? ? ? x3 x3 BA ? BC ? ( x1 ? x2 , e x1 ? e x2 ) ? ( x3 ? x2 , e ? e x2 ) ? ( x1 ? x2 )( x3 ? x2 ) ? (e x1 ? e x2 )(e ? e x2 ) ??? ??? ? ? x x x 不妨设 x1 ? x3 ,则 x1 ? x2 ? x3 , e 1 ? e 2 ? e 3 ,则 BA ? BC ? 0 ,所以△ABC 一定是钝角三 ??? ??? ? ? x x x 2 x 2 2 2 角形所以①正确;若 BA ? BC ,则 ( x1 ? x2 ) ? (e 1 ? e 2 ) ? ( x3 ? x2 ) ? (e 3 ? e 2 )

x1 x3


x2


x1 x3

(e x3 ? e x1 )(e x1 ? e x3 ? 2e x2 ) ? 0
x2 x1 x3 ? x2

,
x3


x1



e ? e ?2 e ? 2 e e ?2 e ? 2 e ? 2 e ? 0, 所 以 必 有 e ? e ? 0 , 即 x1 ? x3 ,所以 f ( x1 ) ? f ( x3 ) ,这与函数 f ( x) 为单调增函数矛盾.所以④正确.所以正确
的判断是①④,选 B.
4 . (山东省淄博市 2013 届高三复习阶段性检测(二模)数学(文)试题)定义域为

? a, b? 的函

数 y ? f ? x ? 的 图 象 的 两 个 端 点 为 A,B,M ? x, y ? 是f ? x ? 图 象 上 任 意 一 点 , 其 中

???? ??? ? ??? ? ???? ? x ? ? a ? ?1 ? ? ? b ? ? ? R ? ,向量ON ? ? OA ? ?1 ? ? ? OB ,若不等式 MN ? k 恒成立,

taoti.tl100.com

你的首选资源互助社区

则称函数 f ? x ? 在 ? a, b ? 上“k 阶线性近似”.若函数 y ? x ? 似”,则实数 k 的取值范围为

1 在 ?1,? 上“k 阶线性近 2 x
( )

? A. ? 0, ? ?
【答案】C

? B. ?1, ? ?

C. ? ? 2, ? ? D. ? ? 2, ? ? ? ? ?2 ? ?2 ?

?3

?

?3

?

由 题 意 知 a ? 1, b ? 2 , 所 以 A(1, 2), B (2, ) . 所 以 直 线 AB 的 方 程 为

5 2

1 ( x ? 3) .因为 xM ? ? a ? ?1 ? ? ? b ? ? ? 2 ?1 ? ? ? ? 2 ? ? , 2 ???? ??? ? ??? ? 5 5 ? , 所 以 ON ? ? OA ? ?1 ? ? ? OB ? ? (1, 2) ? ?1 ? ? ? (2, ) ? (2 ? ? , ? ) 2 2 2 xN ? 2 ? ? , M , N 的 横 坐 标 相 同 . 且 点 N 在 直 线 AB 上 . 所 以 ???? ? x 1 x 1 1 1 x 1 3 MN ? yM ? y N ? x ? ? ( x ? 3) ? ? ? , 因 为 ? ? 2 ? ? 2 , 且 2 x 2 x x 2 2 x 2 ???? ? ???? ? x 1 3 x 1 3 3 x 1 3 ? ? , 所 以 MN ? ? ? ? ? ( ? ) ? ? 2 , 即 MN 的 最 大 值 为 2 x 2 2 x 2 2 2 x 2 3 3 C. ? 2 ,所以 k ? ? 2 ,选 2 2 x 2 5 .【解析】山东省德州市 2013 届高三 3 月模拟检测文科数学)函数 y ? 2 ? x 的图象为 ( y?

【答案】D 当 x ? 0 时, y ? 1 ? 0 ,排除 B, C.当 x ? ?? 时, 2 ? 0 ,此时 y ? ?? ,所
x

以排除 A,选

D. ( )

6 . 【 解 析 】 山 东 省 潍 坊 市 2013 届 高 三 上 学 期 期 末 考 试 数 学 文 ( a ) 已 知 函 数 ( )

?kx ? 2, x ? 0 f ( x) ? ? ,若 k ? 0 ,则函数 y ?| f ( x) | ?1 的零点个数是 ?1nx, x ? 0
A.1
【答案】D【解析】由 y ? f ? x ? ? 1 ? 0 ,得

B.2

C.3

D.4

f ( x) ? 1 .若 x ? 0 ,则 f ( x) ? ln x ? 1 ,所

以 ln x ? 1 或 ln x ? ?1 , 解 得 x ? e 或 x ?

1 . 若 x ? 0 , 则 f ( x) ? kx ? 2 ? 1 , 所 以 e 1 3 kx ? 2 ? 1 或 kx ? 2 ? ?1 ,解得 x ? ? ? 0 或 x ? ? ? 0 成立,所以函数 y ?| f ( x) | ?1 k k
D.

的零点个数是 4 个,选

7 .【解析】山东省实验中学 2013 届高三第一次诊断性测试数学(文)试题)下列函数图象中, (

taoti.tl100.com

你的首选资源互助社区

正确的是

【答案】【解析】 中幂函数中 a ? 0 而直线中截距 a C A

? 1 ,不对应.B 中幂函数中 a ?

直线中截距 a ? 1 ,不对应.D 中对数函数中 a ? 1 ,而直线中截距 0 ? a ? 1 ,不对应,选
8 .【解析】山东省实验中学 2013 届高三第二次诊断性测试数学文试题)函数 y ? (

1 而 2
C.

lg | x | 的图 x

象大致是

lg | x | 为奇函数,所以图象关于原点对称,排除 A, B.当 x =1 x 2? m 9 .【解析】山东省青岛一中 2013 届高三 1 月调研考试文科数学)已知幂函数 f ( x ) ? x ( 是 定义在区间 [?1, m] 上的奇函数,则 f (m ? 1) ? ( )
【答案】D【解析】函数 y ? f ( x )=

A.8

B.4
3

C.2

D.1

【答案】 【解析】 A 因为幂函数在 [?1, m] 上是奇函数,所以 m ? 1 ,所以

f ( x) ? x 2? m ? x3 ,
( )

所以 f (m ? 1) ?? f (1 ? 1) ? f (2) ? 2 ? 8 ,选 A.
10 . 【 解 析 】 山 东 省 青 岛 市 2013 届 高 三 第 一 次 模 拟 考 试 文 科 数 学 ) 定 义 区 间 (

b a (a, b) , [a, b) , (a, b] , [a, b] 的长度均为 d? ? . 用 [ x ] 表示不超过 x 的最大整数, 记 {} x [ ], 其 中 x ? R . 设 f x? ? x , gx ? ? , 若 用 d 表 示 不 等 式 x ? ?x () []{ x } () x 1 ( f( )? ( )解集区间的长度,则当 0 ≤ x ≤ 3 时,有 x gx A. d ? 1 B. d ? 2 C d ?3 D. d ? 4




f ( x) ? [ x] ?{x} ? [ x] ? ( x ? [ x]) ? [ x]x ? [ x]2 , 由 f ( x) ? g ( x) , 得 [ x]x ? [ x]2 ? x ? 1 ,即 ([ x] ? 1) x ? [ x]2 ? 1 .当 x ? [0,1) , [ x] ? 0 ,不等式的解为 x ? 1 , 不合题意.当 x ? [1, 2) , [ x] ? 1 ,不等式为 0 ? 0 ,无解,不合题意.当 x ? 2 时, [ x] ? 1 ,所
【 答 案 】 A

以不等式 ([ x] ? 1) x ? [ x] ? 1 等价为 x ? [ x] ? 1 ,此时恒成立,所以此时不等式的解为
2

taoti.tl100.com

你的首选资源互助社区

x gx 2 ? x ? 3 ,所以不等式 f( )? ( )解集区间的长度为 d ? 1 ,所以选
A.
11 . 【 解 析 】 山 东 省 烟 台 市 2013 届 高 三 上 学 期 期 末 考 试 数 学 ( 文 ) 试 题 ) 设 函 数 (





f ( x) ? x sin x ? cos x 的图像在点 (t , ( f (t )) 处切线的斜率为 k,则函数 k=g(t)的部分图
像为

【答案】B【解析】函数的导数为 f '( x) ? x sin x ? cos x ? x cos x ,即 k ? g (t ) ? t cos t .

则函数 g (t ) 为奇函数,所以图象关于原点对称,所以排除 A, 时, g (t ) ? 0 ,所以排除排除 D,选 B.

C





0?t ?

?
2

12. (山东省威海市 2013 届高三上学期期末考试文科数学)对于函数 f ( x) ,如果存在锐角 ? 使

得 f ( x) 的图像绕坐标原点逆时针旋转角 ? ,所得曲线仍是一函数,则称函数 f ( x) 具备角

? 的旋转性,下列函数具有角
A. y ?

?
4

的旋转性的是 C. y ? ( ) x





x

B. y ? ln x

1 2

D. y ? x 2

【答案】设直线 y ? x ? b ,要使 f ( x) 的图像绕坐标原点逆时针旋转角

?
4

,所得曲线仍是 C.

一函数,则函数 y ? x ? b 与 f ( x) 不能有两个交点.由图象可知选
13.【解析】山东省青岛市 2013 届高三第一次模拟考试文科数学)函数 y (

?2

1? x

的大致图象为

y
1
O

y
1 1

y

y
1

x

O

x

O

x

O

x

A
【答案】A

B 因为 y ? 21? x ? ( ) x ?1 ,所以选

C

D (
*

1 2



A.
14. (山东省烟台市 2013 届高三 3 月诊断性测试数学文)已知数列{an}(n∈N )是各项均为正数

且公比不等于 1 的等比数列,对于函数 y=f(x),若数列{1nf(an)}为等差数列,则称函数 f(x) 为 “ 保 比 差 数 列 函 数 ”. 现 有 定 义 在 (0,+ ? ) 上 的 三 个 函

taoti.tl100.com

你的首选资源互助社区

数:① f ( x) ? A.①②

1 x ;② f ( x) ? e x

③f(x)= x ,则为“保比差数列函数”的是





B.②③ C.①③ D.①②③ 【 答 案 】 设 数 列 的 公 比 为 q . 若 ln f ( an ) 为 等 差 , 则

ln f (an ) ? ln f (an ?1 ) ? ln

f (an ) f (an ) 1 ? d ,即 ? e d 为等比数列.①若 f ( x) ? ,则 x f (an ?1 ) f (an ?1 ) f (an ) an ?1 1 1 f (an ) ? ,所以 ? ? ,为等比数列,所以①是“保比差数列函数”.② an f (an ?1 ) an q
x

f (an ) e an 若 f ( x) ? e ,则 ? an?1 ? e an ? an?1 不是常数,所以②不是“保比差数列函数”.③ f (an ?1 ) e
若 f ( x) ?

x ,则

f (an ) ? f (an ?1 )
C.

an an ?1

?

an ? q ,为等比数列,所以是“保比差数列函 an ?1

数”,所以选

15. 【解析】山东省济南市 2013 届高三上学期期末考试文科数学)设 (

f ? f ? ?1? ? = ? ?
A.1 B.2 C4
2
1

? x2 , x ? 0 f ? x? ? ? x ,则 ?2 , x ? 0
( D.8 )

B. f (?1) ? (?1) ? 1 ,所以 f ? f ? ?1? ? ? f (1) ? 2 ? 2 ,选 ? ? ?x ? ( x ? 20000) ?2 cos 16.山东省烟台市 2013 届高三 3 月诊断性测试数学文) ( 已知函数 f(x)= ? , 3 ?2 x ? 2008 ( x ? 2000) ?
【答案】B 解:

则 f[f(2013)]= A. 3
【 答 案

( B.- 3




C.1
2013? 2008 5

D.-1 , 所 以

f [ f ( 2013)] f (32) ? ?

f (2013) ? 2 ? 2 ? 32 32? 2 ? D. 2 cos ? 2 cos ? ? ,选 1 3 3

17.【解析】山东省潍坊市 2013 届高三第二次模拟考试文科数学)函数 y ? ( ) (

1 2

x ?1

的大致图象



taoti.tl100.com

你的首选资源互助社区

? 1 x ?1 1 x ?1 ?( ) , x ? ?1 【答案】B 因为 y ? ( ) ,所以图象选 ?? 2 2 x ?1 ?2 , x ? ?1 ?

B.

18 . 山东 省 威海 市 2013 届 高 三上 学期 期 末考 试文 科 数 学) 已知函数 f ( x) 的定义域为 (

( (3 ? 2a, a ? 1) ,且 f ( x ? 1) 为偶函数,则实数 a 的值可以是 2 A. B. 2 C. 4 D. 6 3 【答案】 【答案】 因为函数 f ( x ? 1) 为偶函数,所以 f (? x ? 1) ? f ( x ? 1) ,即函数 f ( x) 关 B 3 ? 2a ? a ? 1 于 x ? 1 对称,所以区间 (3 ? 2a, a ? 1) 关于 x ? 1 对称,所以 ? 1 ,即 a ? 2 , 2 所以选 B.



19 . 【 解 析 】 山 东 省 实 验 中 学 2013 届 高 三 第 二 次 诊 断 性 测 试 数 学 文 试 题 ) 已 知 (

f ( x ? 1) ? f ( x ? 1), f ( x) ? f (? x ? 2) ,方程 f ( x) ? 0 在[0,1]内有且只有一个根 x ?

则 f ( x) ? 0 在区间 ?0,2013? 内根的个数为 ( A.2011 B.1006 C.2013 D.1007 【答案】C【解析】由 f ( x ? 1) ? f ( x ? 1) ,可知 f ( x ? 2) ? f ( x ) ,所以函数 f ( x) 的周期 是 2,由 f ( x) ? f (? x ? 2) 可知函数 f ( x) 关于直线 x ? 1 对称,因为函数 f ( x) ? 0 在 [0,1]内有且只有一个根 x ? 个,选 C.

1 , 2



1 ,所以函数 f ( x) ? 0 在区间 ?0,2013? 内根的个数为 2013 2

20. ( 【解析】 山东省潍坊市 2013 届高三第二次模拟考试文科数学) 某学校要召开学生代表大会,

规定根据班级人数每 10 人给一个代表名额,当班级人数除以 10 的余数大于 6 时,再增加 一名代表名额.那么各班代表人数 y 与该班人数 x 之间的函数关系用取整函数 y ? [ x] ([x] 表示不大于*的最大整数)可表示为 ( A. y ? [



x ] 10

B. y ? [

x?3 ] 10

C. y ? [

x?4 ] 10

D. y ? [

x?5 ] 10

【答案】B 法一:特殊取值法,若 x=56,y=5,排除

C.D,若 x=57,y=6,排除

A,所以选 B

? ? 3? ? x ? 3? ? ?x? ? ? ?m ? 10 ? ? m ? ?10 ?, ? 10 ? ? ? ? ? ? ? 3? ? x ? 3? ? ?x? 当6 ? ? ? 9时, ? ? ? ?m ? 10 ? ? m ? 1 ? ?10 ? ? 1 ,所以选 B ? 10 ? ? ? ? ? 21.【解析】山东省实验中学 2013 届高三第一次诊断性测试数学(文)试题)设函数 f ( x) 定义 ( 在实数集 R 上, f (2 ? x) ? f ( x) ,且当 x ? 1 时 f ( x) = 1nx ,则有 ( 1 1 1 1 A. f ( ) ? f (2) ? f ( ) B. f ( ) ? f (2) ? f ( ) 3 2 2 3
法二:设 x ? 10m ? ? (0 ? ? ? 9) , 0 ? ? ? 6时, ?



taoti.tl100.com

你的首选资源互助社区

C. f ( ) ? f ( ) ? f (2)

x ?1 对 称 , 所 以 1 3 1 5 3 5 f ( ) ? f ( ), f ( ) ? f ( ) ,且当 x ? 1 时,函数单调递增,所以 f ( ) ? f ( ) ? f (2) , 2 2 3 3 2 3 1 1 即 f ( ) ? f ( ) ? f (2) ,即选 C. 2 3
【 答 案 】 C 【 解 析 】 由 f (2 ? x ) ? f ( x ) 可 知 函 数 关 于 直 线 22 . 【 解 析 】 山 东 省 实 验 中 学 2013 届 高 三 第 二 次 诊 断 性 测 试 数 学 文 试 题 ) 设 (

1 2

1 3

D. f (2) ? f ( ) ? f ( )

1 2

1 3

F ( x) ? f ( x) ? f (? x), x ? R, [?? ,? ] 为函数 F (x) 的单调递增区间,将 F (x) 图像向右 2 平移 ? 个单位得到一个新的 G (x) 的单调减区间的是 ? ? ? ?? ? ? 3? ? ? 3? ? A ?? ,? B. ? ,? C. ??, ? D. ? , ? 0 0 2? ? 2 ? ?2 ? ? 2? ? 2 ?
【答案】D【解析】因为函数

?

F ( x) ? f ( x) ? f (? x), x ? R

为偶函数,在当 x ? [ ,? ] 为

?

? 3? ? 减函数, F (x) 图像向右平移 ? 个单位,此时单调减区间为 ? , ? ,选 2? ? 2 ?

2

D.

23 . 【 解 析 】 山 东 省 济 宁 市 2013 届 高 三 1 月 份 期 末 测 试 ( 数 学 文 ) 解 析 ) 已 知 函 数 (

f ? x ? ? 2 x ? x, g ? x ? ? x ? log 1 x, h ? x ? ? log 2 x ? x 的 零 点 分 别 为 x1 , x2 , x3 , 则
2

x1 , x2 , x3 的大小关系是
A. x1 ? x2 ? x3
【答案】D 解:由
x

( C. x1 ? x3 ? x2
2



B. x2 ? x1 ? x3

D. x3 ? x2 ? x1

f ? x ? ? 2 x ? x ? 0,g ? x ? ? x ? log 1 x ? 0,h ? x ? ? log 2 x ? x ? 0 得
. 在 坐 标 系 中 分 别 作 出

2 ? ? x, x ? log 1 x, log 2 x ? x
2

y ? 2 x , y ? ? x, y ? x, y ? log1 x ,
2

y ? log 2 x, y ? x 的 图 象 , 由 图 象 可 知 ?1 ? x1 ? 0 , 0 ? x2 ? 1 , x3 ? 1 , 所 以 x3 ? x2 ? x1 ,选 D.

taoti.tl100.com

你的首选资源互助社区

24.【解析】山东省实验中学 2013 届高三第二次诊断性测试数学文试题)已知幂函数 f (x) 的 (

图像经过(9,3),则 f (2) ? f (1) = A.3 B. 1? 2 C. 2 ? 1 D.1





【答案】C【解析】设幂函数为
1

1 f ( x)=x? ,则 f (9)=9? =3 ,即 32? =3 ,所以 2? =1,? = , 2
C.
?1

即 f ( x)=x 2 = x ,所以 f (2) ? f (1)= 2 ? 1 ,选 的值域为 A.R C. (??, 0) ? (0, ??)
【答案】C x
?1

25. ( 【解析】 山东省枣庄市 2013 届高三 3 月模拟考试 数学 (文) 试题) 函数 f ( x) ? log 2 ( x

? 1)
( )

B. (0, ??) D. (??,1) ? (0, ??)

1 ? 1 ? 1 , 所 以 f ( x) ? log 2 ( x ?1 ? 1) ? log 2 1 ? 0 . 即 y ? 0 所 以 x ?1 C. f ( x) ? log 2 ( x ? 1) 的值域时, (??, 0) ? (0, ??) ,选 ?1 ?
( )

26 . 【 解 析 】 山 东 省 德 州 市 2013 届 高 三 上 学 期 期 末 校 际 联 考 数 学 ( 文 ) 已 知 函 数 ( )

?1gx, x ? 0 f ( x) ? ? , 则 f (a) ? f (1) ? 0 ,则实数 a 的值等于 ? x ? 3, x ? 0
B.-l 或 3 C.1 D.-3 或 l 【 答 案 】 D 解 : 因 为 f (1) ? lg1 ? 0 , 所 以 由 f ( a ) ? f (1) ? 0 得 f ( a ) ? 0 . 当 a ? 0 A.-3 时, f (a ) ? lg a ? 0 ,所以 a ? 1 .当 a ? 0 时, f (a ) ? a ? 3 ? 0 ,解得 a ? ?3 .所以实数 a 的值为 a ? 1 或 a ? ?3 ,选 域中,既是奇函数又是减函数的是 D.
27.【解析】山东省实验中学 2013 届高三第三次诊断性测试文科数学)下列函数中,在其定义 (





1 A. f ( x) ? x

B. f ( x) ?

?x

C. f ( x) ? 2 ? x ? 2 x

D. f ( x)

【答案】C【解析】 f ( x ) ?

函数. f ( x) ? ? tan x 在定义域上是奇函数,但不单调.所以选 C.

1 在定义域上是奇函数,但不单调. f ( x) ? ? x 为非奇非偶 x

taoti.tl100.com

你的首选资源互助社区

28.【解析】山东省烟台市 2013 届高三 5 月适应性练习(一)文科数学)已知函数 y=f(x)的定 (

义域为{x|x≠0},满足 f(x)+f(-x)=0,当 x>0 时,f(x)=1nx-x+l,则函数)y=f(x)的大致图 象是

【答案】 【解析】由 f(x)+f(-x)=0 得 f (? x) ? ? f ( x) ,即函数为奇函数,所以排除 C, 29. ( 【解析】 山东省德州市 2013 届高三上学期期末校际联考数学 (文) 已知 a>0,b>0,且 ab ? 1 , )

D.当 x ?

A.

则函数 f ( x) ? a

x

与函数 g ( x) ? 1og b x 的图象可能是

【答案】D 解:因为对数函数 g ( x) ? 1og b x 的定义域为 (0, ??) ,所以排除 A, 30. ( 【解析】 山东省德州市 2013 届高三上学期期末校际联考数学 (文) 若 f ( x) 是偶函数,且 x0 )

C.因为 a

是 y = f ( x) + e 的一个零点,则 - x0 一定是下列哪个函数的零点 A. y = f (- x)e - 1 C. y = f ( x)e - 1
【 答 案 】 D 解 : 由 题 意 知 f ( x0 ) ? e
x0

x





x

B. y = f ( x)e

- x x

+1
f ( x0 ) ? ?1 , 即 e x0 ? f (? x0 )e ? x0 ? ?1 , 即
D.

x

D. y = f ( x)e + 1

? 0 , 则 f ( x0 ) ? ?e x0 , 所 以

f ( x0 )e ? x0 ? ?1 . 因 为 函 数 f ( x) 是 偶 函 数 , 所 以 f ( x0 )e ? x0
f (? x0 )e ? x0 ? 1 ? 0 ,所以 - x0 一定是 y = f ( x)e x + 1 的零点,选

31.【解析】山东省济南市 2013 届高三 3 月高考模拟文科数学)函数 y (

? x ? x 3 的图象大致为

1

taoti.tl100.com

你的首选资源互助社区

【答案】A 函数为奇函数,图象关于原点对称,所以排除 C,

D.当 x ? 1 时, y ? 0 ,当 ( )

x ? 8 时, y ? 8 ? 8 ? 8 ? 2 ? 6 ? 0 ,排除 B,选
3

A.
32.【解析】山东省泰安市 2013 届高三上学期期末考试数学文)下列函数 (

f ? x ? 中,满足“对任
( )

意的 x1 , x2 ? ? 0, ?? ? , 当x1 ? x2 时,都有 f ? x1 ? ? f ? x2 ? ”的是

1 x x C. f ? x ? ? 2
A. f ? x ? ?

B. f ? x ? ? x ? 4 x ? 4
2

D. f ? x ? ? log 1 x
2

【答案】C【解析】由条件可知函数在 (0, ??) ,函数 f ( x) 递增,所以选 33.【解析】山东省临沂市 2013 届高三 5 月高考模拟文科数学)下列函数中既是偶函数,又在 (

C. ( )

( +? 上单调递增的函数是 区间 0, )
A. y ? x
【答案】B
3

B. y ? |x| ? 1

C. y ? ? x ? 1
2

D. y ? 2

x

( +? 上单调递减,不成立.D 为非奇非 因为 A 是奇函数,所以不成立.C 在 0, ) 偶函数,不成立,所以选 B.
34.【解析】山东省济宁市 2013 届高三第一次模拟考试文科数学 )函数 f ( x ) ? ln( x ? (

1 )的 x

图象是

【答案】B【解析】要使函数有意义,则由 x ?

A, 的零点有 A.0 个

35.【解析】山东省实验中学 2013 届高三第三次诊断性测试文科数学)函数 f ( x) ? ( x ? 1) ln x (

C.当 ?1 ? x ? 0 时,函数单调递增,所以选

1 ? 0 ,解得 ?1 ? x ? 0 或 x ? 1 ,所以排除 x
B. ( )

B.1 个

C.2 个

D.3 个

【答案】B【解析】函数的定义域为 {x

x ? 0} ,由 f ( x) ? ( x ? 1) ln x ? 0 得, x ? 1 ? 0 或

taoti.tl100.com

你的首选资源互助社区

ln x ? 0 ,即 x ? ?1 (舍去)或 x ? 1 ,所以函数的零点只有一个,选
36 . 【 解 析 】 山 东 省 泰 安 市 2013 届 高 三 上 学 期 期 末 考 试 数 学 文 ) 设 (

a ?b ,函数

B.

y ? ? x ? a?

2

? x ? b ? 的图象可能是

【答案】B【解析】由图象可知

0 ? a ? b . y ? f ( x) ? ? x ? a ? ? x ? b ? , 则
2

f (0) ? ?a 2b ? 0 ,排除 A,
时, f ( x) ? ? x ? a ?
2

C



, B.



a? x?b

? x ? b ? ? 0 ,排除 D,选

37.【解析】山东省青岛市 2013 届高三第一次模拟考试文科数学)函数 (

f ( x) ? 1 ? x log 2 x 的
( )

零点所在区间是

1 1 A. ( , ) 4 2

1 B. ( ,1) C. (1, 2) D. (2,3) 2 【答案】 因为 f (1) ? 1 ? log 2 1 ? 1 ? 0 , f (2) ? 1 ? 2 log 2 2 ? ?1 ? 0 ,所以根据根的存 C 在性定理可知函数的零点所在的区间为 (1, 2) ,选 C.
38.【解析】山东省济宁市 2013 届高三 1 月份期末测试(数学文)解析)下列函数中,既是偶函 (

数,又在区间 ? 0, ?? ? 上单调递减的函数是 A. y ? ? x
【答案】A 解:


2



B. y ? x

?1

C. y ? x
1 2

D. y ? x

1 2

y ? x ?1 为奇函数, y ? x 为非奇非偶函数, y ? x 2 在 ? 0, ?? ? 上单调递增,
( )

所以选 A.
39.【解析】山东省青岛一中 2013 届高三 1 月调研考试文科数学)设函数 (

? x 2 ? bx ? c , x ? 0 f ( x) ? ? ,若 f (4) ? f (0) , f (2) ? 2 ,则函数 g ( x) ? f ( x) ? x 的零点 ,x ? 0 ?1
的个数是 A.0 ( B.1 C.2 D.3 )
【答案】C【解析】因为 f (4) ? f (0) , f (2) ? 2 ,所以 16+4b ? c ? c 且 4 ? 2b +c ? 2 ,解

得 b ? ?4, c ? 6 ,即

? x2 ? 4x ? 6 , x ? 0 f ( x) ? ? ,x ?0 ?1

.即当 x ? 0 时,由 g ( x) ? f ( x) ? x ? 0

2 2 得 x ? 4 x ? 6 ? x ? 0 , 即 x ? 5x ? 6 ? 0 , 解 得 x ? 2 或 x ? 3 . 当 x ? 0 时 , 由

g ( x) ? f ( x) ? x ? 0 得 1 ? x ? 0 ,解得 x ? 1 ,不成立,舍去.所以函数的零点个数为 2 个,

taoti.tl100.com

你的首选资源互助社区



C.
1 x ? x 2 的定义域为 x ?1

40.【解析】山东省临沂市 2013 届高三 3 月教学质量检测考试(一模)数学(文)试题)函数 (

f ( x ) ? ln

( C.(0,1) D.(0,1) ? (1,+ ? )



A.(0,+∞)
【答案】B

B.(1,+∞)

?x ? 0 ?x ? 0 ? 要使函数有意义,则有 ? x ,即 ? ,所以解得 x ? 1 ,即定义 ? x( x ? 1) ? 0 ? x ?1 ? 0 ?
B.

域为 (1, ??] ,选

41.(【解析】山东省济南市 2013 届高三上学期期末考试文科数学)已知函数

f ? x ? ? 2x ? 2 ,

则函数 y ? f ? x ? 的图象可能是

?2 x ? 2, x ? 1 ? 【答案】B 解: f ? x ? ? 2 ? 2 ? ? ,选 x ?2 ? 2 , x ? 1 ?
x

B.

二、填空题 42. ( 【解析】 山东省枣庄市 2013 届高三 3 月模拟考试 数学 (文) 试题) 函数

? x ? 1, x ? 0 f ( x) ? ? 2 ? x ? x, x ? 0

的零点的个数为______. 【答 案】 1 当 x ? 0 时,由 f ( x) ? 0 得 x ? 1 ? 0 ,此时 x ? ?1 不成立.当 x ? 0 时,由

f ( x) ? 0 得 x 2 ? x ? 0 ,此时 x ? ?1 或 x ? 0 (不成立舍去).所以函数的零点为 x ? ?1
为 1 个.
43.(【解析】山东省滨州市 2013 届高三第一次(3 月)模拟考试数学(文)试题)定义在 R 上

的偶函数 f ( x ) ,且对任意实数 x 都有 f ( x ? 2) ? f ( x ) ,当 x ? ? 0,1? 时, 范围是___________.

f ( x ) ? x 2 ,若在区间 ? ?1,3? 内,函数 g ( x ) ? f ( x ) ? kx ? k 有 4 个零点,则实数 k 的取值

【答案】 (0, ] 由 f ( x ? 2) ? f ( x ) 得函数的周期为 2.由 g ( x) ? f ( x) ? kx ? k ? 0 ,得

1 4 f ( x) ? kx ? k ? k ( x ? 1) ,分别作出函数 y ? f ( x), y ? k ( x ? 1) 的图象,

taoti.tl100.com

你的首选资源互助社区

要使函数有 4 个零点,则直线 y ? k ( x ? 1) 的斜率 0 ? k ? k AB ,因为 k AB ? 所以 0 ? k ?

1? 0 1 ? , 3 ? (?1) 4

1 1 ,即实数 k 的取值范围是 (0, ] . 4 4

44.【解析】山东省实验中学 2013 届高三第三次诊断性测试文科数学)已知定义在 R 的奇函数 (

f (x) 满 足 f ( x ? 4) ? ? f ( x) , 且 x ? [0,2] 时 , f ( x) ? log 2 ( x ? 1) , 下 面 四 种 说 法 ① f (3) ? 1 ;②函数 f (x) 在[-6,-2]上是增函数;③函数 f (x) 关于直线 x ? 4 对称;④若 m ? (0,1) ,则关于 x 的方程 f ( x) ? m ? 0 在[-8,8]上所有根之和为-8,其中正确的序号
_________. 【答案】①④【解析】由 f ( x ? 4) ? ? f ( x) 得 f ( x ? 8) ? f ( x ) ,所以函数的周期是 8.又 函数为奇函数,所以由 f ( x ? 4) ? ? f ( x ) ? f (? x ) ,所以函数关于 x ? ?2 对称.同时

f ( x ? 4) ? ? f ( x) ? ? f (4 ? x) ,即 f ( x) ? f (4 ? x) ,函数也关于 x ? 2 对称,所以③不 正确.又 x ? [0,2] ,函数 f ( x) ? log 2 ( x ? 1) 单调递增,所以当 x ? [?2, 2] 函数递增,又函 数 关 于 直 线 x ? ?2 对 称 , 所 以 函 数 在 [-6,-2] 上 是 减 函 数 , 所 以 ② 不 正 确. f (?3) ? ? f (1) ? ? log 2 2 ? ?1 ,所以 f (3) ? 1 ,故①正确.若 m ? (0,1) ,则关于 x 的 方程 f ( x) ? m ? 0 在[-8,8]上有 4 个根,其中两个根关于 x ? 2 对称,另外两个关于 x ? ?6 对称,所以关于 x ? 2 对称的两根之和为 2 ? 2 ? 4 ,关于 x ? ?6 对称的两根之和 为 ?6 ? 2 ? ?12 ,所以所有根之后为 ?12 ? 4 ? ?8 ,所以④正确.所以正确的序号为①④. 45.【解析】山东省潍坊市 2013 届高三第一次模拟考试文科数学)在区间 ? 0, 4? 内随机取两个 (
数 a、b, 则使得函数 f ( x) ? x ? ax ? b 有零点的概率 为___________.
2 2

【答案】

?0 ? a ? 4 1 函数有零点,则 ? ? a 2 ? 4b 2 ? 0 ,即 (a ? 2b)(a ? 2b) ? 0 .又 ? ,做 4 ?0 ? b ? 4

出对应的平面区域为

,当 a ? 4 时, b ? 2 ,即三角形 OBC 的面

taoti.tl100.com

你的首选资源互助社区

1 ? 4 ? 2 ? 4 , 所 以 由 几 何 概 型 可 知 函 数 f ( x) ? x 2 ? ax ? b 2 有 零 点 的 概 率 为 2 4 1 ? . 4? 4 4 ?lg x, x ? 0 46. (山东省威海市 2013 届高三上学期期末考试文科数学) 已知 f ( x) ? ? x ,则函数 ?2 , x ? 0 y ? 2 f 2 ( x) ? 3 f ( x) ? 1 的零点的个数为______个. 1 2 【答案】 【答案】 由 y ? 2 f ( x) ? 3 f ( x) ? 1 ? 0 解得 f ( x) ? 1 或 f ( x) ? .若 f ( x) ? 1 , 4 2 1 x 当 x ? 0 时,由 lg x ? 1 ,解得 x ? 10 .当 x ? 0 时,由 2 ? 1 得 x ? 0 .若 f ( x) ? ,当 2 1 1 x ? 0 时,由 lg x ? ,解得 x ? 10 .当 x ? 0 时,由 2 x ? 得 x ? ?1 .综上共有 4 个零 2 2
积为 点.
47 . 【 解 析 】 山 东 省 实 验 中 学 2013 届 高 三 第 二 次 诊 断 性 测 试 数 学 文 试 题 ) 对 于 函 数 (

f ( x) ? x | x | ? px ? q ,现给出四个命题:
① q ? 0 时, f (x) 为奇函数 ② y ? f (x) 的图象关于 (0, q ) 对称 ③ p ? 0, q ? 0 时,方程 f ( x) ? 0 有且只有一个实数根 ④方程 f ( x) ? 0 至多有两个实数根 其中正确命题的序号为_____________________.

f ( x) ? x | x | ? px ? x( x ? p ) ,为奇函数,所以①正 确.由①知,当 q ? 0 时,为奇函数图象关于原点对称, f ( x) ? x | x | ? px ? q 的图象由函 数 f ( x) ? x | x | ? px 向上或向下平移 q 个单位,所以图象关于 (0, q ) 对称,所以②正确.
【答案】①②③【解析】若 q ? 0 ,则

? x 2 ? q, x ? 0 ? f ( x) ? x | x | ? q ? ? 2 ?? x ? q, x ? 0 ,当 f ( x) ? 0 ,得 x ? ? q ,只有 当 p ? 0, q ? 0 时, ? ? x 2 ? x, x ? 0 ? f ( x) ? x | x | ? x ? ? 2 ?? x ? x, x ? 0 ,由 f ( x) ? 0 , 一解,所以③正确.取 q ? 0, p ? ?1 , ? 可得 x ? 0, x ? ?1 有三个实根,所以④不正确,综上正确命题的序号为①②③. 48. 【解析】山东省潍坊市 2013 届高三上学期期末考试数学文( a) 若函数 f (x) 满足 ( ) ?m ? R, m ? 0 ,对定义域内的任意 x, f ( x ? m) ? f ( x) ? f (m) 恒成立,则称 f (x) 为 m
函数,现给出下列函数: ①y?

1 ; x

② y ? 2x ;

③ y ? sin x ;

④ y ? 1nx

taoti.tl100.com

你的首选资源互助社区

其中为 m 函数的序号是_________.(把你认为所有正确的序号都填上)
【答案】②③【解析】①若 y ?

1 1 1 1 ,则由 f ( x ? m) ? f ( x) ? f (m) 得 ? ? ,即 x x?m x m

1 1 m 1 , 所 以 m 2 ? x( x ? m) ? x 2 ? mx , 显 然 不 恒 成 立 .② 若 ? ? ? x ? m x x ( x ? m) m y ? 2 x ,由 f ( x ? m) ? f ( x) ? f (m) 得由 2( x ? m) ? 2 x ? 2m 恒成立,所以②为 m 函 数 .③ 若 y ? sin x , 由 f ( x ? m) ? f ( x) ? f (m) 得 sin( x ? m) ? sin x ? sin m , 当 m ? 2? 时,有 sin( x ? 2? ) ? sin x , sin m ? sin 2? ? 0 ,此时成立,所以③为 m 函数.④ 若 y ? 1nx , 由 f ( x ? m) ? f ( x) ? f (m) 得 由 ln( x ? m ) ? ln x ? ln m ? ln mx , 即 x ? m ? mx , 即 (1 ? m) x ? m ? 0 , 要 使 (1 ? m) x ? m ? 0 恒 成 立 , 则 有 1 ? m ? 0 , 即 m ? 1 .但此时 (1 ? m) x ? m ? 0 ? 1 ? 1 ? 0 ,所以不存在 m ,所以④不是 m 函数.所以为 m 函数的序号为②③. 49. ( 【解析】 山东省济宁市 2013 届高三第一次模拟考试文科数学 ) 设满足 3x ? 5 y 的点 P 为(x,y),
下列命题正确的序号是________. ①(0,0)是一个可能的 P 点;②(lg3,lg5)是一个可能的 P 点;③点 P(x,y)满足 xy≥0; ④ 所有可能的点 P(x,y)构成的图形为一直线. x y 【 答 案 】 ①③④ 【 解 析 】 若 3 ? 5 , 则 由 图 象 可 知 x ? y ? 0 或 0 ? y ? x 或

x? y?0 .
x y

所 以 ①③ 正 确 . 因 为
x y

0 ? lg 3 ? lg 5 , 所 以 ② 不 正 确 . 由 3 ? 5 得 lg 3 ? lg 5 , 即 x lg 3 ? y lg 5 , 所 以 lg 3 为直线,所以④正确,所以命题正确的是①③④. y?x lg 5
50 . 【 解 析 】 山 东 省 济 宁 市 2013 届 高 三 1 月 份 期 末 测 试 ( 数 学 文 ) 解 析 ) 已 知 函 数 (

? x 2 ? 1, x ? 0 f ? x? ? ? ,则满足不等式 f ? 2 ? x 2 ? ? f ? x ? 的 x 的取值范围是_____. 1, x?0 ? 2 【 答 案 】 ? 2 ? x ? 1 解 : 当 x ? 0 时 , 函 数 f ( x) ? x ? 1 ? 1 , 且 单 调 递 增 . 所 以 由
f ? 2 ? x2 ? ? f ? x ?

?2 ? x 2 ? 0 ?? 2 ? x ? 2 ?2 ? x ? 0 ? ? 可 得 ? 或 者 ?x ? 0 , 即 ? 或 ?x ? 0 ?x ? 0 ? ?2 ? x 2 ? x ?
2

taoti.tl100.com

你的首选资源互助社区

?? 2 ? x ? 2 ?? 2 ? x ? 2 ? ? ,所以 ? 2 ? x ? 0 或 ? x ? 0 ,即 ? 2 ? x ? 0 或 0 ? x ? 1 ,所 ?x ? 0 ? x2 ? x ? 2 ? 0 ??2 ? x ? 1 ? ?
以 ? 2 ? x ? 1 ,即满足不等式 f 2 ? x 2 ? f ? x ? 的 x 的取值范围是 ? 2 ? x ? 1 .
51 . 【 解 析 】 山 东 省 德 州 市 2013 届 高 三 上 学 期 期 末 校 际 联 考 数 学 ( 文 ) 关 于 函 数 ( )

?

?

f ( x) = 1g

x2 + 1 (x | x|

0) ),有下列命题:

①其图象关于 y 轴对称;②当 x > 0 时 f ( x) 是增函数;当 x < 0 时 f ( x) 是减函数; ③ f ( x) 的最小值是 1g 2; ④ f ( x) 在区间 (- 1, 0)和(1, + 结论的序号是_______________.
【答案】①③④解:①因为函数

) 上是增函数,其中所有正确

x2 + 1 = f ( x) ,所以函数为偶函数,所以,图 | x| x2 ? 1 1 象关于 y 轴对称,所以①正确.②因为函数 ? ? x ,在 (0, ??) 上不单调,所以函 x x f (- x) = 1g
x2 ? 1 1 数 f ( x) 也不单调,所以②错误.③又 ? ? x ? 2 ,所以 f ( x) ? lg 2 ,最小值为 x x
1g 2 ,所以③正确.④因为在区间 (- 1, 0)和(1, +

) 上,

x2 ? 1 1 ? ? x 递增,所以函数 x x

f ( x) = 1g

x2 + 1 (x | x|

0) 在区间 (- 1, 0)和(1, +

) 也是增函数,所以④正确,所以正确
f ? x? 满
1 ,则 2

的结论为①③④.
52.【解析】山东省济南市 2013 届高三上学期期末考试文科数学)定义在 R 上的函数 (

足 f ? ? x ? ? ? f ? x ? , f ? x ? 2 ? ? f ? x ? 2 ? , 且 x ? ? ?2, 0 ?

时 , f ? x ? ? 2x ?

f ? 2013? =__________________.
【 答 案 】 ?1 解 : 因 为

f ? ? x ? ? ? f ? x ? , 所 以 函 数 f ( x) 为 奇 函 数 . 因 为
1 ? 1 ,所以 f (?1) ? ? f (1) ? 1 ,即 f (1) ? ?1 ,所 2

f ? x ? 2 ? ? f ? x ? 2 ? , 所 以 f ? x ? 4 ? ? f ? x ? , 即 函 数 的 周 期 为 4. 所 以

f ? 2013? ? f (1) ,因为 f (?1) ? 2?1 ?
以 f ? 2013? ? f (1) ? ?1 .

53.【解析】山东省临沂市 2013 届高三 3 月教学质量检测考试(一模)数学(文)试题)定义 (

在 R 上 的 偶 函 数 f ( x ) 对 任 意 的 x ? R 有 f ( 1 ? x ) ? f ( 1 ? x ) , 且 当 x ? [2,3] 时, f ( x ) ? ? x ? 6 x ? 9 .若函数 y ? f ( x ) ? log a x 在(0,+∞)上有四个零点,则 a 的值
2

为 ____.

taoti.tl100.com

你的首选资源互助社区

1 由 f ( 1 ? x ) ? f ( 1 ? x ) 得函数 f ( x ) 的对称轴为 x ? 1 .因为 f ( x ) 为偶函 4 数,所以 f (1 ? x ) ? f (1 ? x ) ? f ( x ? 1) ,即 f ( x ? 2) ? f ( x) ,所以函数的周期为 2.当 x ? [2,3] 时 , f ( x ) ? ? x 2 ? 6 x ? 9 ? ?( x ? 3 )2 . 由 y ? f ( x ) ? log a x ? 0 , 得 f ( x) ? log a x ,令 y ? f ( x), y ? g ( x) ? log a x ,则 f (2) ? f (4) ? f (6) ? ?1 ,作出函数
【答案】

y ? f ( x) 的图象,如图

.要使函数 y ? f ( x ) ? log a x 在(0,+∞)

上有四个零点,则有 0 ? a ? 1 ,且 g (4) ? f (4) ,即 log a 4 ? ?1 ,解得 a ?

54.【解析】山东省烟台市 2013 届高三上学期期末考试数学(文)试题)若对函数 y ? f ( x ) 定 (

1 . 4

义域内的每一个值 x1 ,都存在唯一的值 x2 ,使得 f ( x1 ) f ( x2 ) ? 1 成立,则称此函数为“K 函数”,给出下列三个命题: ① y ? x 是“K 函数”;② y ? 2 是“K 函数”;③ y ? ln x 是“K 函数”,其中正确命题 的序号是__________
x ?2

【答案】②

【解析】对于① y ? x ,由 f ( x1 ) f ( x2 ) ? 1 得
?2

?2

1 1 ? 2 ? 1 ,即 x12 x2 2 ? 1 , 2 x1 x2
x

对应的 x1 , x2 不唯一,所以① y ? x 得, 2 1 ? 2
x x2

不是 K 函数.对于② y ? 2 ,由 f ( x1 ) f ( x2 ) ? 1

? 2 x1 ? x2 ? 1 ,即 x1 ? x2 ? 0 ,所以 x2 ? ? x1 ,所以唯一,所以② y ? 2 x 是 K 函数.

对 于 ③ y ? ln x , 因 为 y ? ln x 有 零 点 , 所 以 当 x1 ? 1 时 , y ? ln x1 ? 0 , 但 此 时

f ( x1 ) f ( x2 ) ? 1 不成立,所以③ y ? ln x 不是 K 函数,所以其中正确命题的序号是②.
55. (山东省烟台市 2013 届高三 3 月诊断性测试数学文)函数 f(x)=cosx -log8 的零点个数为
x

_____________. 【答案】3 由 f ( x) ? 0 得 cos x ? log 8 x ,设 y ? cos x, y ? log 8 x ,作出函数 y ? cos x, y ? log8 x 的图象,由图象可知,函数的零点个数为 3 个.

taoti.tl100.com

你的首选资源互助社区

56. (山东省淄博市 2013 届高三复习阶段性检测(二模)数学(文)试题)已知函数

f ? x ? 在实

数 集 R 上 具 有 下 列 性 质 :① 直 线 x ? 1 是 函 数 f ? x ? 的 一 条 对 称 轴 时, ;②
2 1

? f ? x ? ? f ? x ?? ? ? x

f ? x ? 2? ? ? f ? x ?
2

;③



1 ? x1 ? x2 ? 3

? x1 ? ? 0, 则 f ? 2012 ? 、 f ? 2013? 从 大 到 小 的 顺 序 为
由 f ? x ? 2? ? ? f ? x ? 得 f ? x ? 4? ? f ? x ? ,

_______.
【答案】 f (2013) ? f (2012) ? f (2011)

所以周期是 4 所以 f (2011) ? f (3) , f ? 2012 ? ? f (0) , f (2013) ? f (1) .因为直线

? f ? x ? ? f ? x ?? ? ? x
2 1
x

x ? 1 是 函 数 f ? x ? 的 一 条 对 称 轴 , 所 以 f ? 2012? ? f (0) ? f (2) .. 由
? x1 ? ? 0 , 可 知 当 1 ? x1 ? x2 ? 3 时 , 函 数 单 调 递 减 . 所 以 f (2013) ? f (2012) ? f (2011) .
2

57 . 【 解 析 】 山 东 省 实 验 中 学 2013 届 高 三 第 一 次 诊 断 性 测 试 数 学 ( 文 ) 试 题 ) 若函数 (

? 1 ?( ) f ( x) ? ? 4 , ?1 ? x ? 0 ,则 f (1og 4 3) =_______________________. ?4 x , ? log 3 【答案】3【解析】因为 0 ? 1og 4 3 ? 1 ,所以 f (1og 4 3) ? 4 4 ? 3 .
58 . (【 解 析 】 山 东 省 济 宁 市 2013 届 高 三 第 一 次 模 拟 考 试 文 科 数 学
2

)函数

?ln x ? x ? 2 x,x ? 0 f(x)?? 的零点个数是____. ? 4 x ? 1,x ? 0 2 2 【 答 案 】 3 【 解 析 】 当 x ? 0 时 , 由 ln x ? x ? 2 x ? 0 得 ln x ? x ? 2 x , 设 y ? ln x, y ? x 2 ? 2 x , 作 出 函 数 y ? ln x, y ? x 2 ? 2 x 的 图 象 , 由 图 象 可

taoti.tl100.com

你的首选资源互助社区

知,

此 时 有 两 个 交 点 . 当 x ? 0 时 , 由 4x ?1 ? 0 , 解 得

1 x ? ? .所以函数的零点个数为 3 个. 4
59 . 山 东 省 青 岛 即 墨 市 2013 届 高 三 上 学 期 期 末 考 试 数 学 ( 文 ) 试 题 ) 已 知 函 数 (
x ?log 2 ( x ? 0) f ( x) ? ? x ,,且关于 x 的方程 f ( x) ? a ? 0 有两个实根,则实数 a ?2 ( x ? 0)

的范围是____________ x 0 【答案】 ? a ? 1 解:当 x ? 0 时, 0 ? 2 ? 1 ,所以由图象可知当要使方程 f ( x) ? a ? 0 有 两 个 实 根 , 即 f ( x) ? a 有 两 个 交 点 , 所 以 由 图 象 可 知

0 ? a ? 1.
三、解答题 60.【解析】山东省实验中学 2013 届高三第二次诊断性测试数学文试题)已知定义域为 R 的函 (

? 2x ? b 数 f ( x) ? x ?1 是奇函数. 2 ?a
(1)求 a, b 的值 (2)若对任意的 t ? R ,不等式 f (t 2 ? 2t ) ? f (2t 2 ? k ) ? 0 恒成立,求 k 的取值范围.

taoti.tl100.com

你的首选资源互助社区

【答案】

61.【解析】山东省临沂市 2013 届高三 3 月教学质量检测考试(一模)数学(文)试题)(本小 (

题满分 l2 分) 上午 7:00~7:50,某大桥通过 l00 辆汽车,各时段通过汽车辆数及各时段的平均车速如下 表: 7:00-7:1 7:10-7: 7:20-7: 7:30-7: 7:40-7:5 时段 0 20 30 40 0 通过车辆数 平均车速(公 里/小时)

x
60

15 56

20 52

30 46

y 50

已知这 100 辆汽车,7:30 以前通过的车辆占 44%. (I)确定算 x,y 的值,并计算这 100 辆汽车过桥的平均速度; (Ⅱ)估计一辆汽车在 7:00~7:50 过桥时车速至少为 50 公里/小时的概率(将频率视为概

taoti.tl100.com

你的首选资源互助社区

率).
【答案】


推荐相关:

taoti.tl100.com 你的首选资源互助社区 山东省 2014 届高三文科数学一轮复习之 2013 届名校解析试题精选分类汇编 11: 统计一、选择题 1 .【解析】山东省潍坊市...


山东省2014届高三文科数学一轮复习之2013届名校解析试题精选分类汇编13:常用逻辑用语...? 2 x ? ? ,此时函数单调递增,所以 p4 正确.综上选 A. 4 4 2 4 2...


taoti.tl100.com 你的首选资源互助社区 山东省 2014 届高三文科数学一轮复习之 2013 届名校解析试题精选分类汇编 3:三角函数一、选择题 1 .( 【解析】 山东省...


2014届高三文科数学备考之2013届名校解析试题精选分类汇编3:三角函数_Word版含答案 2_数学_高中教育_教育专区。高三文科数学一轮复习名校解析试题精选分类汇编:三角...


1 山东省 2014 届高三文科数学一轮复习之 2013 届名校解析试题精选分类汇编 3:三角函数一、选择题 1. ( 【解析】 山东省泰安市 2013 届高三上学期期末考试数学...


山东省2014届高三文科数学一轮复习之2013届名校解析试题精选分类汇编14:导数_数学...?2 ,选 B. 2 【答案】 函数的导数为 y ' ? 4 .【解析】山东省临沂市...


2014届高三文科数学备考之2013届名校解析试题精选分类汇编3:三角函数_Word版含答案_2_数学_高中教育_教育专区。高三文科数学一轮复习名校解析试题精选分类汇编:三角...


2014 届高三文科数学一轮复习之 2013 届名校解析试题精选分类汇编 3:三角函数一、选择题 1 .(【解析】山东省泰安市 2013 届高三上学期期末考试数学文) 函数 f...


山东省 2014 届高三文科数学一轮复习之 2013 届名校解析试题精选分类汇编 3: 三角函数一、选择题 1 .【解析】山东省泰安市 2013 届高三上学期期末考试数学文) ...


山东省 2014 届高三理科数学备考之 2013 届名校解析试题精选分类汇编 2: 函数一、选择题 1 .(山东省潍坊市 2013 届高三上学期期末考试数学理( A .)已知函数 ...

网站首页 | 网站地图
3986 3986.net
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@qq.com