3986.net
小网站 大容量 大智慧
当前位置:首页 >> 数学 >>

新课标-圆锥曲线(椭圆)专题复习(高二)(1)


圆锥曲线---椭圆专题练习(一) 一、选择题(12 ? 5 ? 60 )
1. 椭圆 25x2+16y2=1 的焦点坐标是( ) 。

(A)3x-2y-12=0 (B)2x+3y-12=0 (C)4x+9y-144=0 (D)4x-9y-144=0 11. F 是椭圆的一个焦点,BB′是椭圆的短轴,若△BFB′是等边三角形,则椭圆的离心率 e 等于 (A)

1 4

(B)

1 2

(C)

2 2

(D)

3 2

3 3 1 (A)(±3, 0) (B)(± , 0) (C)(± , 0) (D)(0, ± ) 3 20 20 3 2.椭圆 mx2+y2=1 的离心率是 ,则它的长半轴的长是( ) 2 1 (A)1 (B)1 或 2 (C)2 (D) 或 1 2 2 2 x y 3. 椭圆 + =1 的焦距等于( )(A)4 (B)8 (C)16 (D)12 3 。 32 16 4.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( )
(A)

12. 椭圆

x2 y2 + 2 =1 (a>b>0)上任意一点到两个焦点的距离分别为 d1,d2,焦距为 2c,若 d1, 2c, d2,成 b a2

等差数列则椭圆的离心率为(

) (A) 。

1 2

(B)

2 2

(C)

3 2

(D)

3 4

二、填空题(4 ? 5 ? 20 )
13. 椭圆的长、短轴都在坐标轴上,经过 A(0, 2)与 B(

1 , 2

3 )则椭圆的方程为

。 。

14. 方程 4x2+my2=1 表示焦点在 y 轴上的椭圆,且离心率 e= 15. 已知直线 y=x+m 与椭圆 )

1 2
2 2

(B)

2 2
2 2

(C)

3 2
2 2

(D)

3 3
2 2

3 , 则 m= 2

5.已知椭圆长半轴与短半轴之比是 5:3,焦距是 8,焦点在 x 轴上,则此椭圆的标准方程是(

x x x x y y y y + =1(B) + =1 (C) + =1 (D) + =1 3 9 5 25 5 25 3 9 2 6. 已知椭圆的对称轴是坐标轴,离心率 e= ,长轴长为 6,那么椭圆的方程是( ) 。 3
(A)

x2 y2 + =1 有两个不同的交点, m 的取值范围是 则 。 16 9 16.椭圆的长半轴是短半轴的 3 倍,过左焦点倾斜角为 30°的弦长为 2 则此椭圆的标准方程 是 。

三、解答题(70)
17、已知椭圆 两点,求|AB|

x 2 y2 x 2 y2 x 2 y2 x 2 y2 x 2 y2 x 2 y2 (A) + =1 B) + ( =1 或 + =1(C) + =1 D) + ( =1 或 + =1 36 20 36 20 20 36 9 5 9 5 5 9 7.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( )
(A)

x2 y2 ? ? 1 的左右焦点分别为 F1,F2,若过点 P(0,-2)及 F1 的直线交椭圆于 A,B 2 1

1 2

(B)

2 2

(C)

3 2

(D)

3 3

8. 椭圆

y2 x2 + =1 的焦点在 y 轴上,则 m 的取值范围是( ) ( m ? 1) 2 m2

1 1 且 m≠-1 (C)m>- 且 m≠0 (D)m>0 2 2 2 2 2 2 x y y x 9. 曲线 + =1 与曲线 + =1 (k<9),具有的等量关系是( ) 。 25 k - 9?k 25 9 (A)有相等的长、短轴 (B)有相等的焦距 (C)有相等的离心率 (D)有相同的准线 10. 椭圆 4x2+9y2=144 内有一点 P(3, 2),过 P 点的弦恰好以 P 为中点,那么这条弦所在的直线方 程是( ) 。
(A)全体实数 (B)m<-
椭圆(一)第 1 页 共 2 页

18. 椭圆的中心在原点,焦点在 x 轴上,若椭圆的一个焦点将长轴分成的两段的比例中项等于椭圆

4 5 的焦距,又已知直线 2x-y-4=0 被此椭圆所截得的弦长为 ,求此椭圆的方程。 3

21、过 P(- 3 ,0)作一直线 l 交椭圆 E:11x2+y2=9 于 M、N 两点,问 l 的倾斜角多大时,以 M、 N 为直径的圆过原点?

x2 y2 + =1 内有一点 M(4, -1),使过点 M 的弦 AB 的中点正好为点 M,求弦 AB 所在 10 40 的直线的方程。
19. 在椭圆 22、已知椭圆

x2 ?1 1? (1)求过点 P? , ? 且被 P 平分的弦所在直线的方程; ? y2 ? 1, 2 ? 2 2?

(2)求斜率为 2 的平行弦的中点轨迹方程; (3)过 A?2, 引椭圆的割线,求截得的弦的中点的轨迹方程; 1? (4)椭圆上有两点 P 、 Q , O 为原点,且有直线 OP 、 OQ 斜率满足 kOP ? kOQ ? ? 求线段 PQ 中点 M 的轨迹方程.

1 , 2

y2 x2 1 ? ? 1 的一条弦的斜率为 3,它与直线 x ? 的交点恰为这条弦的中点 M ,求 20、已知椭圆 75 25 2
点 M 的坐标。

椭圆(一)第 2 页 共 2 页


推荐相关:

圆锥曲线专题复习

圆锥曲线专题复习_高二数学_数学_高中教育_教育专区。圆锥曲线专题复习一、课前自测. 1.已知椭圆方程为 3x2 ? 2 y 2 ? 6 ,则焦点坐标为 ,顶点坐标为 , ...


高考专题复习之椭圆

了解椭圆的简单应用 理解数形结合的思想 了解方程的曲线与曲线的方程的对应关系 考情分析圆锥曲线新课标高考的必考点之一,考查的方式一般是 1 小题+1 大题。...


...2019学年数学高考一轮复习:第十五章圆锥曲线与方程1...

【高中】2018-2019学年数学高考一轮复习:第十五章圆锥曲线与方程15.1椭圆 - §15.1 椭圆 命题探究 (1)椭圆的半焦距为 c. 直线 l2 的方程:y=(x-1)....


高二文科圆锥曲线专题复习(含答案)

高二文科圆锥曲线专题复习(含答案) - 圆锥曲线文科专题复习 知识回顾: 圆锥曲线的两个定义: 1、 椭圆: 第一定义:椭圆中,与两个定点 F 1 ,F 2 的距离...


高二数学圆锥曲线专题((文科)

高二数学圆锥曲线专题((文科) - 高二数学(文科)专题复习(十二)圆锥曲线 、选择题 1. 设双曲线以椭圆 x2 y2 ? ? 1 长轴的两个端点为焦点,其准线过椭圆...


文科圆锥曲线专题练习及答案

文科圆锥曲线专题练习及答案_数学_高中教育_教育专区...文科圆锥曲线 1.设 F1F2 是椭圆 E : x2 y 2...掌握程度.突出展现高考前的复习要回归课本的新课标...


第一轮复习自己整理绝对经典2016圆锥曲线--第一轮

复习自己整理绝对经典2016圆锥曲线--第一轮_高三数学_数学_高中教育_教育...x2 y2 ? ?1 3 4 3 【2015 高考新课标 1,理 14】个圆经过椭圆 圆...


2018-2019学年数学高考一轮复习:第十五章圆锥曲线与方...

2018-2019学年数学高考一轮复习:第十五章圆锥曲线与方程15.1椭圆 - 数学 §15.1 椭圆 命题探究 (1)椭圆的半焦距为 c. 直线 l2 的方程:y=(x-1).② ...


高二数学圆锥曲线基础练习题(一)

高二数学圆锥曲线基础练习题(一)_专业资料。高二数学圆锥曲线基础练习题(一)一...7 3 三、解答题: 17.已知椭圆的一个顶点为 A(0,?1) ,焦点在 x 轴上,...


2017高考数学专题复习:圆锥曲线(基础)

2017 高考数学专题复习:圆锥曲线(基础)第一部分:椭圆 1.定义: 2017.1.26 2.标准方程: 3.长轴长: 短轴长: 焦距: 通径: 4.勾股关系: 5.离心率: 6....

网站首页 | 网站地图
3986 3986.net
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@qq.com