3986.net
小网站 大容量 大智慧
当前位置:首页 >> 数学 >>

2017年普通高等学校招生全国统一考试数学试题文(全国卷2,含解析)

绝密★启用前

2017 年普通高等学校招生全国统一考试 课标 II 文科数学
【命题特点】 2017 年高考全国新课标 II 数学卷,试卷结构在保持稳定的前提下,进行了微调,一是取消试卷中的第Ⅰ卷 与第 II 卷,把解答题分为必考题与选考题两部分,二是根据中学教学实际把选考题中的三选一调整为二选 一。试卷坚持对基础知识、基本方法与基本技能的考查, 注重数学在生活中的应用。 同时在保持稳定的基 础上,进行适度的改革和创新,与 2016 年相比难度稳中有降略。具体来说还有以下几个特点: 1.知识点分布保持稳定 小知识点集合,复数,程序框图,线性规划,向量问题,三视图保持一道小题的占比,大知识点三角数列 三小一大,概率统计一大一小,立体几何两小一大,圆锥曲线两小一大,函数导数三小一大(或两小一大)。 2.注重对数学文化与数学应用的考查 教育部 2017 年新修订的《考试大纲(数学) 》中增加了数学文化的考查要求。2017 高考数学全国卷 II 理科 第 3 题以《算法统宗》中的数学问题为进行背景,文科 18 题以以养殖水产为题材,贴近生活。 3.注重基础,体现核心素养 2017 年高考数学试卷整体上保持一定比例的基础题,试卷注重通性通法在解题中的运用,另外抽象、推理 和建模是数学的基本思想,也是数学研究的重要方法,试卷对此都有涉及。 【命题趋势】 1.函数知识:函数性质的综合应用、以导数知识为背景的函数问题是高考命题热点,函数性质重点是奇偶 性、单调性及图象的应用,导数重点考查其在研究函数中的应用,注重分类讨论及化归思想的应用。 2. 立体几何知识:立体几何一般有两道小题一道大题,小题中三视图是必考问题,常与几何的面积与体积 结合在一起考查,解答题一般分 2 进行考查。 3.解析几何知识:解析几何试题一般有 3 道,圆、椭圆、双曲线、抛物线一般都会涉及,双曲线一般作为 客观题进行考查,多为容易题,解答题一般以椭圆与抛物线为载体进行考查,运算量较大,不过近几年高 考适当控制了运算量,难度有所降低。 4.三角函数与数列:三角函数与数列解答题一般轮流出现,若解答题为数列题,一般比较容易,重点考查 基本量求通项及几种求和方法,若解答题为三角函数,一般是解三角形问题,此时客观题中一般会有一道 与三角函数性质有关的题目,同时客观题中会有两道数列题,一易一难,数列客观题一般具有小巧活的特

点。 【试卷解析】 一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.设集合 A ? {1, 2,3}, B ? {2,3, 4} 则 A ? B ?

, 2, 3, 4? A. ?1
【答案】A

, 2, 3? B. ?1

C.

3, 4? ?2,

, 3, 4? D. ?1

2. (1 ? i)(2 ? i) ? A. 1 ? i 【答案】B 【解析】由题意 (1 ? i)(2 ? i) ? 2 ? 3i ? i 2 ? 1 ? 3i ,故选 B. 【考点】复数运算 【名师点睛】首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如 B. 1 ? 3i C. 3 ? i D. 3 ? 3i

(a ? b i )(c ?

d)i ? ( a ?c

. 要R 熟悉复数相关基本概念,如复数 b )? d ( ? a d ) b,c( i , a ,? b . 其 c 次 d)

a ? bi (a, b ? R) 的实部为 a 、虚部为 b 、模为 a 2 ? b2 、对应点为 (a , b) 、共轭为 a ? bi.
3.函数 f ( x) ? sin(2 x ? A. 4 π 【答案】C 【解析】由题意 T ? B. 2 π

π ) 的最小正周期为 3
C.

π

D.

π 2

2? ? ? ,故选 C. 2

【考点】正弦函数周期

【名师点睛】函数 y ? A sin(? x ? ?) ? B(A ? 0, ? ? 0) 的性质 (1) ymax =A+B,ymin ? A ? B . (2)周期 T ?
2?

?

.

π ? kπ(k ? Z) 求对称轴 2 π π π 3π ? 2kπ(k ? Z) 求减区间; (4)由 ? ? 2kπ ? ? x ? ? ? ? 2kπ(k ? Z) 求增区间; 由 ? 2kπ ? ? x ? ? ? 2 2 2 2
(3)由 ? x ? ? ? 4.设非零向量 a , b 满足 a+b = a-b 则 A. a ⊥ b 【答案】A B. a = b C.

a ∥b

D. a ? b

5.若 a ? 1 ,则双曲线 A. ( 2, ??) 【答案】C 【解析】由题意 e2 ?

x2 ? y 2 ? 1的离心率的取值范围是 a2
B. ( 2, 2) C. (1, 2) D. (1, 2)

1 c2 a2 ? 1 1 ? 2 ? 1 ? 2 ,因为 a ? 1 ,所以 1 ? 1 ? 2 ? 2 ,则 1 ? e ? 2 ,故选 C. 2 a a a a

【考点】双曲线离心率 【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于 a, b, c 的方程或不等 式,再根据 a, b, c 的关系消掉 b 得到 a , c 的关系式,而建立关于 a, b, c 的方程或不等式,要充分利用椭圆和 双曲线的几何性质、点的坐标的范围等.

6.如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截 去一部分后所得,则该几何体的体积为 A. 90π B. 63π C. 42π D. 36π

【答案】B

? 2 x +3 y ? 3 ? 0 ? 7.设 x, y 满足约束条件 ? 2 x ? 3 y ? 3 ? 0 ,则 z ? 2 x ? y 的最小值是 ?y ?3 ? 0 ?
A. ?15 【答案】A 绘 制 不 等 式 组 表 示 的 可 行 域 , 结 合 目 标 函 数 的 几 何 意 义 可 得 函 数 在 点 B ? ?6, ?3? 处 取 得 最 小 值 B. ?9 C. 1 D 9

z ? ?12 ? 3 ? ?15 .故选 A.

【考点】线性规划 【名师点睛】点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无 误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出 错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得. 8.函数 f ( x) ? ln( x2 ? 2x ? 8) 的单调递增区间是 A. (??, ?2) B. (??, ?1) 【答案】D C. (1, ??) D. (4, ??)

9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有 2 位优秀,2 位良 好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我 的成绩,根据以上信息,则 A.乙可以知道两人的成绩 B.丁可能知道两人的成绩

C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩

【答案】D 【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲丁一人优秀一人良好,乙看到丙的结果则知道自 己的结果,丁看到甲的结果则知道自己的结果,故选 D. 【考点】推理 【名师点睛】推理实际考查数据处理能力,从众多数据中,挑选关键数据进行分类讨论,一般利用反证法、 类比法、分析法得到结论. 10.执行右面的程序框图,如果输入的 a ? ?1 ,则输出的 S ? A.2 B.3 C.4 D.5

【答案】B

律,明确流程图研究的数学问题,是求和还是求项. 11.从分别写有 1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后再随机抽取 1 张,则抽得的第一张卡片上的 数大于第二张卡片上的数的概率为 A.

1 10

B.

1 5

C.

3 10

D.

2 5

【答案】D

12.过抛物线 C : y 2 ? 4x 的焦点 F ,且斜率为 3 的直线交 C 于点 M ( M 在 x 轴上方),l 为 C 的准线, 点 N 在 l 上且 MN ? l ,则 M 到直线 NF 的距离为 A. 5 B. 2 2 C. 2 3 D. 3 3

【答案】C 【解析】由题知 MF : y ? 3( x ?1) ,与抛物线 y 2 ? 4 x 联立得 3x2 ? 10 x ? 3 ? 0 ,解得 x1 ?

1 , x2 ? 3 3

所以 M (3, 2 3) ,因为 MN ? l ,所以 N (?1, 2 3) ,因为 F (1, 0) ,所以 NF : y ? ? 3( x ?1) 所以 M 到 NF 的距离为

| 3(3 ? 1) ? 2 3 | (? 3) 2 ? 12

?2 3

【考点】直线与抛物线位置关系 【名师点睛】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达 定理或求根公式进行转化,涉及弦长的问题中,应熟练地利用根与系数关系,设而不求法计算弦长;涉及

垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线 的定义求解.涉及中点弦问题往往利用点差法. 二、填空题,本题共 4 小题,每小题 5 分,共 20 分. 13.函数 f ( x) ? 2cos x ? sin x 的最大值为 【答案】 .

5

14.已知函数 f ( x ) 是定义在 R 上的奇函数,当 x ? (??,0) 时, f ( x) ? 2 x3 ? x2 , 则 f (2) ? 【答案】12 【解析】 f (2) ? ? f (?2) ? ?[2 ? (?8) ? 4] ? 12 【考点】函数奇偶性 【名师点睛】(1)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式, 或充分利用奇偶性得出关于 f ( x ) 的方程,从而可得 f ( x ) 的值或解析式. (2)已知函数的奇偶性求参数,一般采用待定系数法求解,根据 f ( x) ? f (? x) ? 0 得到关于待求参数的恒 等式,由系数的对等性得参数的值或方程(组),进而得出参数的值. 15.长方体的长、宽、高分别为 3, 2,1 ,其顶点都在球 O 的球面上,则球 O 的表面积为 【答案】 14 π. 【解析】球的直径是长方体的体对角线,所以 2R ? 32 ? 22 ? 1 ? 14, S ? 4πR 2 ? 14π. 【考点】球的表面积 【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或 线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、 外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求 解.

16. ?ABC 的内角 A, B, C 的对边分别为 a, b, c ,若 2bc cos B ? a cos C ? c cos A ,则 B ? 【答案】

? 3

三、解答题:共 70 分。解答应写出文字说明,证明过程或演算步骤,第 17 至 21 题为必考题,每个试题考 生都必须作答。第 22、23 题为选考题,考生根据要求作答。 (一)必考题:共 60 分。 17.(12 分) 已知等差数列 {an } 的前 n 项和为 Sn ,等比数列 {bn } 的前 n 项和为 Tn , a1 ? ?1, b1 ? 1, a2 ? b2 ? 2 (1)若 a3 ? b3 ? 5 ,求 {bn } 的通项公式; (2)若 T3 ? 21,求 S3 . 【答案】 (Ⅰ) ; (Ⅱ)当 时, .当 时, .

【解析】试题分析: (1)根据等差数列及等比数列通项公式,表示条件,得关于公差与公比的方程组,解 方程组得公比,代入等比数列通项公式即可, (2)由等比数列前三项的和求公比,分类讨论,求公差,再 根据等差前三项求和. 试题解析: (1)设 的公差为 d, d+q=3. 的公比为 q,则 ① , .由 得

18.(12 分) 如 图 , 四 棱 锥 P ? ABCD 中 , 侧 面 PAD 为 等 边 三 角 形 且 垂 直 于 底 面

ABCD , AB ? BC ?

1 AD, ?BAD ? ?ABC ? 900. 2

(1)证明:直线 BC / / 平面 PAD ; (2)若△ PAD 面积为 2 7 ,求四棱锥 P ? ABCD 的体积.

【答案】 (Ⅰ)见解析(Ⅱ)

(2)取 AD 的中点 M,连结 PM,CM,由 AB ? BC ? 则 CM⊥AD.

1 AD 及 BC∥AD,∠ABC=90°得四边形 ABCM 为正方形, 2

因为侧面 PAD 为等边三角形且垂直于底面 ABCD,平面 PAD∩平面 ABCD=AD,所以 PM⊥AD,PM⊥底面 ABCD, 因为 CM ? 底面ABCD ,所以 PM⊥CM. 设 BC=x,则 CM=x,CD= ,PM= ,PC=PD=2x.取 CD 的中点 N,连结 PN,则 PN⊥CD,所以

因为△PCD 的面积为

,所以 ,

解得 x=-2(舍去) ,x=2,于是 AB=BC=2,AD=4,PM= 所以四棱锥 P-ABCD 的体积 .



【考点】线面平行判定定理,面面垂直性质定理,锥体体积 【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行.

(2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直. 19.(12 分) 海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了 100 个网箱,测量各箱 水产品的产量(单位:kg), 其频率分布直方图如下:

(1) 记 A 表示事件“旧养殖法的箱产量低于 50kg”,估计 A 的概率; (2) 填写下面列联表,并根据列联表判断是否有 99%的把握认为箱产量与养殖方法有关: 箱产量<50kg 旧养殖法 新养殖法 (3) 根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。 附: P( ) 0.050 3.841 0.010 6.635 0.001 10.828 箱产量≥50kg

k

K2 ?

n(ad ? bc)2 (a ? b)(c ? d )(a ? c)(b ? d )

【答案】 (1)0.62.(2)有把握(3)新养殖法优于旧养殖法

试题解析: (1)旧养殖法的箱产量低于 50kg 的频率为 (0.012+0.014+0.024+0.034+0.040)×5=0.62 因此,事件 A 的概率估计值为 0.62. (2)根据箱产量的频率分布直方图得列联表 箱产量<50kg 旧养殖法 新养殖法 K = 200 ? (62 ? 66-34 ? 38)
2

箱产量≥50kg 38 66

62 34

100 ?100 ? 96 ?104

≈15.705

由于 15.705>6.635,故有 99%的把握认为箱产量与养殖方法有关. (3)箱产量的频率分布直方图平均值(或中位数)在 45kg 到 50kg 之间,且新养殖法的箱产量分布集中程度较 旧养殖法的箱产量分布集中程度高 ,因此,可以认为新养殖法的箱产量较高且稳定 ,从而新养殖法优于旧养 殖法. 【考点】频率分布直方图 【名师点睛】 (1)频率分布直方图中小长方形面积等于对应概率,所有小长方形面积之和为 1; (2)频率分布直方图中均值等于组中值与对应概率乘积的和 (3)均值大小代表水平高低,方差大小代表稳定性 20.(12 分) 设 O 为坐标原点,动点 M 在椭圆 C 上,过 M 作 x 轴的垂线,垂足为 N,点 P 满足 NP ? 2 NM

??? ?

???? ?

(1)求点 P 的轨迹方程; (2)设点 Q 在直线 x ? ?3 上,且 OP ? PQ ? 1 .证明过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F. 【答案】 (1) (2)见解析

??? ? ??? ?

21.(12 分) 设函数 f ( x) ? (1 ? x2 )ex . (1)讨论 f ( x ) 的单调性;

(2)当 x ? 0 时, f ( x) ? ax ? 1 ,求 a 的取值范围. 【答案】 (Ⅰ)在 (??, ?1 ? 2) 和 (?1 ? 2, ??) 单调递减,在 (?1 ? 2, ?1 ? 2) 单调递增(Ⅱ)[1, ??) 【解析】 试题分析: (1)先求函数导数,再求导函数零点,列表分析导函数符号确定单调区间(2)对 a 分类讨论, 当

a≥1

时 ,

f ( x? )

(?1 x

x 条 件 ; 当 a?0 时 , 取 ) ?( x1 e ? ) ? x1 ?, a满 x ? 足 1

x0 ?

5 ?1 5 ? 4a ? 1 , , f ( x0 ) ? (1 ? x0 )(1 ? x0 ) 2 ? 1 ? ax0 ? 1 , 当 0 < a < 1 时 , 取 x0 ? 2 2

(2) f ( x) ? (1 ? x)(1 ? x)ex 当 a≥1 时,设函数 h(x)=(1-x)ex,h’(x)= -xex<0(x>0) ,因此 h(x)在[0,+∞)单调递减,而 h(0)=1, 故 h(x)≤1,所以

f(x)=(x+1)h(x)≤x+1≤ax+1
当 0<a<1 时,设函数 g(x)=ex-x-1,g’(x)=ex-1>0(x>0),所以 g(x)在在[0,+∞)单调递增, 而 g(0)=0,故 e ≥x+1 当 0<x<1, f ( x) ? (1 ? x)(1 ? x)2 , (1 ? x)(1 ? x)2 ? ax ?1 ? x(1 ? a ? x ? x2 ) ,取 x0 ? 则 x0 ? (0,1),(1 ? x0 )(1 ? x0 ) ? ax0 ? 0, 故f ( x0 )? ax0 ? 1
2
x

5 ? 4a ? 1 2

当 a ? 0 时,取 x0 ?

5 ?1 , f ( x0 ) ? (1 ? x0 )(1 ? x0 ) 2 ? 1 ? ax0 ? 1 2

综上,a 的取值范围[1,+∞)

【考点】利用导数求函数单调区间,利用导数研究不等式恒成立 【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性, 求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问 题转化为函数的最值问题.

(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分。 22。[选修 4-4:坐标系与参数方程](10 分) 在直角坐标系 xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线 C1 的极坐标方程为

? cos? ? 4 。
(1)M 为曲线 C1 上的动点,点 P 在线段 OM 上,且满足 | OM | ? | OP |? 16 ,求点 P 的轨迹 C2 的直角坐标方 程; (2)设点 A 的极坐标为 (2,
2

?
3

) ,点 B 在曲线 C2 上,求 △OAB 面积的最大值。

2 【答案】(1) ? x ? 2 ? ? y ? 4 ? x ? 0 ? ;

(2) 2 ? 3 。

(2)设点 B 的极坐标为 ? ?B ,? ?? ?B ? 0? ,由题设知 OA ? 2, ?B ? 4cos ? ,于是 △OAB 面积

S?

1 OA ? ? B ? sin ?AOB 2 ?? ? ? 4 cos ? ? sin ? ? ? ? 3? ?

?? 3 ? ? 2 sin ? 2? ? ? ? 3? 2 ?
? 2 ? 3。
当? ? ?

?
12

时,S 取得最大值 2 ? 3 。

所以 △OAB 面积的最大值为 2 ? 3 。 【考点】 圆的极坐标方程与直角坐标方程;三角形面积的最值。 【名师点睛】本题考查了极坐标方程的求法及应用。重点考查了转化与化归能力。遇到求曲线交点、距 离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极 坐标的几何意义求解。要结合题目本身特点,确定选择何种方程。 23.[选修 4-5:不等式选讲](10 分) 已知 a ? 0, b ? 0, a3 ? b3 ? 2 。证明: (1) (a ? b)(a5 ? b5 ) ? 4 ; (2) a ? b ? 2 。 【答案】(1)证明略; (2)证明略。

(2)因为

? a ? b?

3

? a 3 ? 3a 2b ? 3ab 2 ? b3 ? 2 ? 3ab ? a ? b ? 3? a ? b? ? 2? 4
2

? a ? b?

3? a ? b? ? 2? , 4
3

所以 ? a ? b ? ? 8 ,因此 a ? b ? 2 。
3

【考点】 基本不等式;配方法。 【名师点睛】利用基本不等式证明不等式是综合法证明不等式的一种情况,证明思路是从已证不等式和问 题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理最后转化为需证问题。若不等式 恒等变形之后若与二次函数有关,可用配方法。


推荐相关:

2017年普通高等学校招生全国统一考试数学试题理(全...

2017年普通高等学校招生全国统一考试数学试题(全国卷2,含解析) - 2017 年普通高等学校招生全国统一考试 理科数学 【命题特点】 2017 年高考全国新课标 II 数学...


2017年普通高等学校招生全国统一考试数学试题文(全...

2017年普通高等学校招生全国统一考试数学试题文(全国卷2,含解析) - 绝密★启用前 2017 年普通高等学校招生全国统一考试 课标 II 文科数学 【命题特点】 2017 年...


2017年普通高等学校招生全国统一考试数学试题 文全...

2017年普通高等学校招生全国统一考试数学试题 文全国卷2含答案 精品_远程、网络教育_成人教育_教育专区。绝密★启用前 2017 年普通高等学校招生全国统一考试 文科数学...


2018年普通高等学校招生全国统一考试数学试题文(全...

2018年普通高等学校招生全国统一考试数学试题文(全国卷2,含答案) - 2018 年普通高等学校招生全国统一考试数学试题 文(全国卷 2) 注意事项: 1.答卷前,考生务必将...


2017年普通高等学校招生全国统一考试数学试题 文(...

2017年普通高等学校招生全国统一考试数学试题 文(全国卷1,含答案)_高考_高中教育_教育专区。2017年普通高等学校招生全国统一考试数学试题 含答案 ...


2017年普通高等学校招生全国统一考试数学试题 理(...

2017年普通高等学校招生全国统一考试数学试题(全国卷3,含解析)_高考_高中教育_教育专区。2017年普通高等学校招生全国统一考试数学试题 含答案 ...


2017年普通高等学校招生全国统一考试数学试题 文数...

2017年普通高等学校招生全国统一考试数学试题 文数(Word版)(全国卷1,含答案)_高考_高中教育_教育专区。2017年普通高等学校招生全国统一考试数学试题(Word版) 含...


...高等学校招生全国统一考试数学试题文(全国卷1,...

2017年普通高等学校招生全国统一考试数学试题文(全国卷1,含答案)_从业资格考试_资格考试/认证_教育专区。绝密★启用前 2017 年普通高等学校招生全国统一考试 文科...


2017年普通高等学校招生全国统一考试数学试题理(全...

2017年普通高等学校招生全国统一考试数学试题(全国卷1,含解析) - 2017 年普通高等学校招生全国统一考试 理科数学 2017 年全国 1 高考数学与 2016 全国 1 高考...


2017年普通高等学校招生全国统一考试数学试题(江苏...

2017年普通高等学校招生全国统一考试数学试题(江苏卷,含解析) - 绝密★启用前 2017 年普通高等学校招生全国统一考试数学试题 江苏卷 参考公式: 柱体的体积 V ? ...

网站首页 | 网站地图
3986 3986.net
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@qq.com