3986.net
小网站 大容量 大智慧
当前位置:首页 >> 数学 >>

高考数学试题汇编:第8章 圆锥曲线方程 第4节 轨迹方程


第八章 圆锥曲线方程 四
(一)填空题(共 1 题) 1. (上海卷 理 3 文 8) 动点 P 到点 F (2, 0) 的距离与它到直线 x ? 2 ? 0 的距离相等, 则P 的 轨迹方程为 。 答案:y2?8x 。 命题立意:考查抛物线定义及标准方程 解析:定义知 P 的轨迹是以 F (2, 0) 为焦点的抛物线,p=2 所以其方程为 y2?8x (二)解答题(共 6 题) 1.(北京卷理 19)在平面直角坐标系 xOy 中,点 B 与点 A(-1,1)关于原点 O 对称,P 是

轨迹方程

1 动点, 且直线 AP 与 BP 的斜率之积等于 3 . ?
(Ⅰ)求动点 P 的轨迹方程; (Ⅱ)设直线 AP 和 BP 分别与直线 x=3 交于点 M,N,问:是否存在点 P 使得△PAB 与△PMN 的 面积相等?若存在,求出点 P 的坐标;若不存在,说明理由。 解: (1)因点 B 与(-1,1)关于原点对称,得 B 点坐标为(1,-1) 。 y ?1 y ?1 y ?1 y ?1 1 k AP ? , kBP ? ? ?? x, y ? ? x ?1 x ? 1 ,由题意得 x ? 1 x ? 1 3, 设 P 点坐标为 ,则
2 2 化简得: x ? 3 y ? 4,( x ? ?1) 。 2 2 即 P 点轨迹为: x ? 3 y ? 4,( x ? ?1)

(2)因 ?APB ? ?MPN ? 180? ,可得 sin ?APB ? sin ?MPN ,
S?APB ? 1 1 PA PB sin ?APB, S?MPN ? PM PN sin ?MPN 2 2 ,
PA PM PA PB ? PM PN 若 S?APB ? S?MPN ,则有 , 即 ? PN PB



设 P 点坐标为 ?
x0 ?

x0 , y0 ?

x0 ? 1

,则有:

3 ? x0

?

3 ? x0 x0 ? 1

解得:

33 5 y0 ? ? 2 2 9 。 3 ,又因 x0 ? 3 y0 ? 4 ,解得

? 5 33 ? ? 5 33 ? , ,? ? ? ?3 9 ? ? ? ?3 9 ? ? 或? ? 故存在点 P 使得 ?PAB 与 ?PMN 的面积相等, 此时 P 点 坐标为 ?
2.(湖北卷理 19 文 20)已知一条曲线 C 在 y 轴右边,C 上没一点到点 F(1,0)的距离减去
第 -1- 页 共 8 页

它到 y 轴距离的差是 1. (Ⅰ)求曲线 C 的方程; (Ⅱ)是否存在正数 m,对于过点 M(m,0)且与曲线 C 有连个交点 A,B 的任一直线,都有

FA ? FB ﹤0 ? 若存在,求出 m 的取值范围;若不存在,请说明理由.

3.(湖南卷理 19)为了考察冰川的融化状况,一支科考队在某冰川上相距 8km 的 A,B 两 点各建一个考察基地.视冰川面为平面形,以过 A,B 两点的直线为 x 轴,线段 AB 的垂直 平分线为 y 轴建立平面直角坐标系(图 6) .在直线 x ? 2 的右侧,考察范围为到点 B 的距

6 5 离不超过 5 km 的区域;在直线 x ? 2 的左侧,考察范围为到 A,B 两点的距离之和不超
过 4 5 km 的区域 .

第 -2- 页 共 8 页

(Ⅰ)求考察区域边界曲线的方程; (Ⅱ)如图 6 所示,设线段

PP 1 2,P 2P 3 是冰川的部分边界线(不考虑其他边界) ,当冰川

融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动 0.2km,以后每年移 动的距离为前一年的 2 倍,求冰川边界线移动到考察区域所需的最短时间. 【解析】 (Ⅰ) 设边界曲线上点 P 的坐标为 ( x, y ) .当 x ≥2 时, 由题意知

( x ? 4) 2 ? y 2 ?

36 5

|+|PB |=4 5知,点P在以A,B焦点,长轴长为2a=4 5 当 x ? 2时,由|PA
x2 y 2 ? ?1 的椭圆上。此时短半轴长 b ? (2 5) ? 4 ? 2 ,因而其方程为 20 4
2 2

故考察区域边界曲线(如图)的 方程为

C1 : ( x ? 4) 2 ? y 2 ?

36 36 ( x ? 2)和C 2 : ( x ? 4) 2 ? y 2 ? ( x ? 2) 5 5

(Ⅱ)设过点 P1,P2 的直线为 l1,点 P2,P3 的直线为 l2,则直线 l1,l 2 的方程分别为

y?

3x ? 14, y ? 6 ,

第 -3- 页 共 8 页

【命题意图】本题以应用题为背景,考查考察考生数学建模能力,考查圆的方程、椭圆的 定义与方程、直线与圆锥曲线的位置关系、 等比数列求和。本题属难题。 4. (湖南卷文 19) 为了考察冰川的融化状况, 一支科考队在某冰川山上相距 8Km 的 A、B 两点各建一个考察基地, 视冰川面为平面形, 以过 A、B 两点的直线为 x 轴,线段 AB 的垂 直平分线为 y 轴建立平面直角坐标系 (图 4) 。 考察范围到 A、 B 两点的距离之和不超过 10Km 的区域。 求考察区域边界曲 线的方程: 如图 4 所示,设线段

PP 1 2 是冰川的部分边界线(不考虑其他边界) ,当冰川融 化时 ,边界

线沿与其垂直的方向朝考察区域平行移动,第一年移动 0.2km,以后每年移动的距离为前 一年的 2 倍。问:经过多长时间,点 A 恰好在冰川边界线上?

第 -4- 页 共 8 页

1 5. (四川卷理 20)已知定点 A(-1,0),F(2,0),定直线 l:x= 2 ,不在 x 轴 上的动点

P 与点 F 的距离是它到直线 l 的距离的 2 倍.设点 P 的轨迹为 E,过点 F 的直线交 E 于 B、C 两点,直线 AB、AC 分别交 l 于点 M 、N (Ⅰ)求 E 的方程; (Ⅱ)试判断以线段 MN 为直径的圆是否过点 F,并说明理由.

第 -5- 页 共 8 页

第 -6- 页 共 8 页

a' ? a ?
6.(上海春卷 22)在平面上,给定非零向量 b ,对任意向量 a ,定义 (1)若 a ? (2,3),b ? (?1,3) ,求 a ;
'

2( a ? b ) b
2

b


' (2)若 b ? (2,1) ,证明:若位置向量 a 的终点在直线 Ax ? By ? C ? 0 上,则位置向量 a

的终点也在一条直线上;
' (3) 已知存在单位向量 b , 当位置向量 a 的终点在抛物线 C : x ? y 上时, 位置向量 a 终
2

点总在抛物线 C : y ? x 上,曲线 C 和 C′关于直线 l 对称,问直线 l 与向量 b 满足什么
' 2

关系?

第 -7- 页 共 8 页

第 -8- 页 共 8 页


推荐相关:

2015高考专题训练:圆锥曲线轨迹及方程求法大全

2015高考专题训练:圆锥曲线轨迹及方程求法大全_数学_高中教育_教育专区。2015高考专题训练:圆锥曲线轨迹及方程求法大全 圆锥曲线专题 内部资料 请勿外传 轨迹方程的...


圆锥曲线轨迹方程经典例题

圆锥曲线轨迹方程经典例题_高三数学_数学_高中教育_...A(4,0) ,且在 y 轴上截得弦 MN 的长为 8....(Ⅰ)求曲线 C1 的方程; 2 2 (湖北)设A是单位...


圆锥曲线轨迹方程经典例题

圆锥曲线轨迹方程经典例题_数学_高中教育_教育专区。...4 y?0 , 代入方程 x2+y2 - 4x - 10=0, ...8 的距离之比为 的轨迹方程.(圆锥曲线第二定义) ...


圆锥曲线轨迹方程经典例题

圆锥曲线轨迹方程经典例题_高二数学_数学_高中教育_教育专区。轨迹方程经典例题一、轨迹为圆的例题: 1、 必修 2 课本 P124B 组 2:长为 2a 的线段的两个端点...


圆锥曲线轨迹方程经典例题

圆锥曲线轨迹方程经典例题_数学_高中教育_教育专区。...4 y?0 , 代入方程 x2+y2 - 4x - 10=0, ...8 的距离之比为 的轨迹方程.(圆锥曲线第二定义) ...


...突破知精讲精练专题6第19讲 圆锥曲线方程与轨迹...

2013届高考数学二轮突破知精讲精练专题6第19讲 圆锥曲线方程轨迹问题_高考_高中教育_教育专区。第 19 讲 圆锥曲线方程轨迹问题 1.(2012· 安徽)过抛物线 y...


第67课时:第八章 圆锥曲线方程——轨迹问题(2)

轨迹方程 8页 免费 第66课时:第八章 圆锥曲... 4页 1财富值 高考数学中求...圆锥曲线方程——轨迹问题(2)圆锥曲线方程——轨迹问题(2)隐藏>> 课题:轨迹问...


高考攻略 黄冈第二轮复习新思维 数学专题七 直线与...

高考攻略 黄冈第二轮复习新思维 数学专题七 直线与圆锥曲线的轨迹与方程_高三...则点M的轨迹方程 七彩教育网 全国最新初中、高中试卷、课件、教案免费下载 七彩...


第八章 圆锥曲线方程——轨迹问题(1)

第八章 圆锥曲线方程——轨迹问题(1) 高中数学课件高中数学课件隐藏>> 七彩教育网 http://www.7caiedu.cn 一.复习目标: 1.掌握求轨迹方程的两种基本方法——...


圆锥曲线轨迹方程与定点定值问题

圆锥曲线轨迹方程与定点定值问题_高三数学_数学_高中...D.5﹣2 C.4﹣2 10.该试题已被管理员删除 11....(Ⅰ)若直线 AC 的方程为 x﹣2y=0,求 AC 的长...

网站首页 | 网站地图
3986 3986.net
文档资料库内容来自网络,如有侵犯请联系客服。zhit325@qq.com